AWS re:Invent 2016: Using MXNet for Recommendation Modeling at Scale (MAC306)

For many companies, recommendation systems solve important machine learning problems. But as recommendation systems grow to millions of users and millions of items, they pose significant challenges when deployed at scale. The user-item matrix can have trillions of entries (or more), most of which are zero. To make common ML techniques practical, sparse data requires special techniques. Learn how to use MXNet to build neural network models for recommendation systems that can scale efficiently to large sparse datasets.

via Amazon Web Services

About The Author
- Launched in 2006, Amazon Web Services offers a robust, fully featured technology infrastructure platform in the cloud comprised of a broad set of compute, storage, database, analytics, application, and deployment services from data center locations in the U.S., Australia, Brazil, China, Germany, Ireland, Japan, and Singapore. More than a million customers, including fast-growing startups, large enterprises, and government agencies across 190 countries, rely on AWS services to innovate quickly, lower IT costs and scale applications globally. To learn more about AWS, visit http://aws.amazon.com.

Tell us what you think...