Best Practices for Building a Data Lake with Amazon S3 – August 2016 Monthly Webinar Series

Uncovering new, valuable insights from big data requires organizations to collect, store, and analyze increasing volumes of data from multiple, often disparate sources at disparate points in time. This makes it difficult to handle big data with data warehouses or relational database management systems alone. A Data Lake allows you to store massive amounts of data in its original form, without the need to enforce a predefined schema, enabling a far more agile and flexible architecture, which makes it easier to gain new types of analytical insights from your data.

Learning Objectives:
• Introduce key architectural concepts to build a Data Lake using Amazon S3 as the storage layer
• Explore storage options and best practices to build your Data Lake on AWS
• Learn how AWS can help enable a Data Lake architecture
• Understand some of the key architectural considerations when building a Data Lake
• Hear some important Data Lake implementation considerations when using Amazon S3 as your Data Lake

About The Author
- Launched in 2006, Amazon Web Services offers a robust, fully featured technology infrastructure platform in the cloud comprised of a broad set of compute, storage, database, analytics, application, and deployment services from data center locations in the U.S., Australia, Brazil, China, Germany, Ireland, Japan, and Singapore. More than a million customers, including fast-growing startups, large enterprises, and government agencies across 190 countries, rely on AWS services to innovate quickly, lower IT costs and scale applications globally. To learn more about AWS, visit

Tell us what you think...